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ABSTRACT

This report offers an introduction to the transfer matrix
method of analyzing the dynamic behavior of common engineering
structures, followed by an explanation of the application of
the transfer matrix method to an array of aircraft panels
which are continuous over supporting stringers. The skin-
stringer problem, important to the prediction of fatigue fail-
ures, is discussed for rather general conditions. The rect-
angular panels may vary in thickness and length while the
stringers may vary in cross-sectional shape and size. The
panels may be flat or curved, and the curved panels may vary
in radius of curvature.

This abstract is subject to special export controls and each
transmittal to foreign governments and foreign nationals may be made
only with prior approval of the Metals and Ceramics Division, MAM,
Air Force Materials Laboratory, Wright-Patterson Air Force Base,
Ohio 45433.
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SYMBOLS

a radius of curvature of a cylindrical shell segment. in.

b panel system width, ie. distance between frames. in. .

c viscous or equivalent viscous damping factor. lb-sec/in2

Cy, cz distances defined in Fig. 10. in.

^C, d, 'e functions of w defined by Eqs. (39)

f, independent solution to a structural equation of motion.

^functions of o defined by Eqs. (69)

gh functions defined by Eqs. (59)

h plate thickness, in.

hpq(t) impulse response function

k hg/12a2

k linear spring constant at the jth Myklestad beam station. in/lb.

I-%- th
k. torsional spring constant at the j Myklestad beam station.

rad/in-lb.

2. length of the jth beam segment (also used without subscript), in.

m mass of a single degree of freedom system. lb-sec /in.

n index number for panel normal modes in x direction.

p [ 12a2(1-v2) / ha] 1/4

'P, qs • distributed load in the vertical direction, in the horizontal
direction, and torque, respectively, acting at the stringer
shear center.

q nir a/b
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sz distance defined in Fig. 10. in.

t time, an independent variable. sec.

tjk (j,k) element of a transfer matrix.

u deflection of a panel segment parallel to the stringers;
positive with the x-axis. in.

v deflection of a panel (segment) or a stringer at the point of

attachment, parallel to the frames; positive, with the corres-
ponding coordinate axis. in.

v cV0 deflections parallel to the frames of a stringer cross-section
at the centroid and shear center, respectively; positive with
the corresponding coordinate axis. in.

w vertical deflection of a panel (segment), or of a stringer at

the point of attachment ; positive down. in.

wc, w vertical deflection of a stringer cross-section at the cen-
troid and shear center respectively; positive down. in.

wj vertical deflection of the jth beam segment, positive down.
in.

x panel cartesian coordinate parallel to stringers.

x independent cartesian space coordinate for the jth beam segment,

positive to the right. (also used without subscript), in.

y panel cartesian coordinate parallel to frames.

A beam or stringer cross-sectional area. in. 2

[B] conversion matrix defined by Eq. (32) for the flat panel and
Eq. (66) for curved panels.

C Saint- Venant constant of uniform torsion. in. 4

Cw warping constant of stringer cross-section. in. 6
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C C+ I( s2 in. 6Cws Cw z

D Eh3  a plate stiffness factor, lb-in.
12(l-v 2 )

[1] differential operator defined by Eqs. (61). rad.

E. Young's modulus for jth structural segment (also used
3 without subscript).lb/in. 2 .

[F]. field transfer matrix defined by Eqs. (6a) and (7) for
the jth beam segment; by Eq. (33) for a flat panel.

G shear elastic modulus, lb/in. 2

[G]. beam point transfer matrix for station j defined by Eq.
(8) or stringer transfer matrix defined by Eq. (40).

H pq(W) frequency response function.

I. area moment of inertia of the jth beam segment. in. 4

IiI•,In stringer area moments of inertia and product of inertia
about the stringer centroid. in. 4

Jc' is stringer cross-section area polar moment of inertia
about the centroid and point of attachment, respectively.

J. discrete rotary inertia at station j of Myklestad beam (lb-in-
sec 2 ) or rotary inertia per unit mass line of panel model
(lb-sec 2 ).

[K] matrix defined in Eq. (62).

[L] matrix defined in Eq. (62).

M(xj) moment amplitude factor for jth segment of Mykelstad beam,
positive tension top side. in.-lb.

Mn component of M correspondint to the nth panel mode in the
y.-x direction. in.-lb./in.

M moment in a flat panel about an x-axis per unit length of
Y x-axis. in-lb/in.
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M• moment in a curved panel about an x-axis per unit length of
x-axis. in. -lb. /in.

N number of Myklestad massless beam segments (or one less
than the total number of beam stations.

N tensile force in a curved panel parallel to the frames per unit
length in the x direction. lb/in.

N~x shear force in the x-plane parallel to the frames, per unit

length in the a4 direction. lb/in.

p q an arbitrary force or moment at station q.

[R] . field tramsfer matrix defined by equation (29).

[T] transfer matrix from position indicated by subscript and super-
script on right side, to position indicated on left side.

.th
V(xj) shear amplitude factor for j segment of Myklestad beam,

positive up on right hand end. lb.

th
Vn component of V corresponding to the n panel mode in the

x direction. 1. /in.

V Y shear in a flat panel in the z direction on a unit length in the
x direction, positive down. lb. /in.

VO shear in a curved panel in the z direction on a unit length in
the x direction, positive down. lb/in.

th

X xj vertical deflection amplitude factor for j segment of a beam,
positive down. in.

th
y panel normal modal amplitude function of y for n mode. in.

n

{z} beam state vector defined by Eqs. (6) and (7); or a panel state
vector defined by Eq. (32) or before Eq. (54).

'ij coefficients to be determined for the functions f.. See Eqs. (60).
1

lx



8 ij coefficients to be determined for the functions gi. See Eqs. (60).

Y,6,C structural damping factors. non-dimensional.

Yi' 6 i real and imaginary parts respectively of the characteristic
roots of the shell segment equation. See Eqs. (50), i=1,2.
rad.

6(t) Dirac delta function - See footnote, page 20.

C damping factor for single degree of freedom system = c/2-r,. rad.

rni quantities defined in Eq. (56). (i=1,2,3).

e. angular width of curved panel segment (See Fig. 11). rad.
J

X. panel span width between stringers.J

Pi discrete mass at station j of Mykelstad beam. lb-sec 2 /in.

V Poisson's ratio. rad.

{0} column matrix of biharmonic functions defined by Eqs. (60). rad.

P mass density lb-sec2 /in. 4

a a root of the characteristic equation of the equation of motion --
defined by Eq. (19a) for the distributed mass beam, by Eqs. (26)
for the flat panel system. rad./in.

angular coordinate of curved panel segment whose corresponding
arc is parallel to the frames. rad.

W circular frequency of vibration. A subscript n indicates a
natural frequency.

A(M) frequency determinant value as a function of w.
O(xj) bending slope amplitude factor for jth segment of Mykelstad

beam = X'(x) rad.

x



Ai constant of integration of a structural equation of
motion.

{E} state vector defined by Eq. (65).

Tn"'n,"n amplitude functions of p for the deflections u, w, and
v respectively. See Eqs. (48).

Q a deflection or bending slope response.
P

xi



I. INTRODUCTION

The following presentation is an attempt to clearly outline the
transfer matrix method of analyzing the dynamic behavior of an elastic
system and, at the same time, to explain a recent extension of this
theory to aircraft type panel-stringer construction[ 1] . For additional
introductory information the reader is referred to Reference [I] .

The technique of transfer matrices is related to the methods of
dynamic analysis developed by Holzer[ 3] and Myklestad[4l. Like
these previous methods, the transfer matrix method is a calculation
of the deflections and internal forces at successive values of a single
space coordinate (stations) by utilizing a knowledge of the system
intertia, damping, and stiffness properties between stations. Thus,
the similarity of these procedures extends to the computation of sys-
tem natural frequencies by iterative procedures, to the determination
of normal modes, and to the calculation of deflection and force and
moment type responses in the case of forced vibrations. In other words,
the transfer matrix method accomplishes the same types of objectives
in much the same manner as the Holzer and Myklestad methods. The
difference between these older techniques and the transfer matrix
technique lies in the advantage of conciseness that results from the
use of matrix algebra by the latter method. This advantage has made
practicable the analysis in detail of complex structures such as single
rows of curved panels supported at varying intervals by not necessarily
symmetrical stringers. The use of matrix algebra does not compro-
mise the original advantages of the Holzer-Myklestad style of analysis.
For example, the transfer matrix method allows the introduction of
appropriate and separate damping descriptions at each component of
the structure. Considering the advances that are currently being
made in damping technology[ 5] , this is no small advantage. On the
other hand, the transfer matrix method leads to certain difficulties in
numerical computation. These problems and their remedies that have
proven to be effective will be briefly discussed.

To explain the principles of the transfer matrix method a series
of examples of increasing complexity will be employed. These examples
also illustrate the scope of this procedure which is presently limited to
"a structure undergoing sinusoidal motion(or being in static equilibrium--
"a special case), and to a structure being one dimensional in space or
whose mathematical description is reducible to that where the unknown
amplitude factor is a function of just one variable. An example of the
latter alternative is a thin plate of rectangular shape which is simply
supported at two opposite edges. In the case of a single frequency
vibration, we could write for the vertical deflection

1



w(x,y,t) = eidt Yn (Y) sin nfx

where y is the space coordinate parallel to the simply supported edges,
and Yn(y) describes the variation of w in the y direction. In other
words, we have reduced a plate problem to a one dimensional problem
susceptible of solution by transfer matrix methods by (justifiably)
assuming the form of the deflection with respect to one of the space
coordinates.

The examples in the order of their discussion are (1) an undamped
beam with discrete masses, (2) an undamped and damped beam with distrib-
uted mass properties, (3) the calculation of frequency response functions
for a beam, (4) a flat panel-stringer row, and (5) a curved panel-stringer
row. The first three examples are for explanatory purposes. The last two
are summaries of recent extensions of transfer matrix methods.
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II. THE MYKLESTAD BEAM PROBLEM

A convenient place to begin an explanation of the principles ofthe transfer matrix method of analysis is with an undamped straight
beam constructed of discrete masses connected by massless beam
segments--the Myklestad "lumped mass" beam model. Figure 1 is
a drawing of a general Myklestad model beam, where pj and Jj are
the discrete mass and rotary inertia at station J, respectively. We
could begin our analysis by examining either of the two essentialfeatures of this beam, the elastic supports and the concentrated masses
located at the stations, or the beam segments between stations. Letus begin by taking a detailed look at typical massless beam segment (j),Figure 2, where for generality we will include all possible combinations
of stiffness and inertia at the stations that mark the segment endpoints.
If in an actual application any of these properties are absent, theirdescriptive constant is, of course, zero. The combination of a linear and
a torsional spring could, for example, be supplied by another beam ofsmall mass running perpendicular to the beam under consideration andattached to it at the given station.

To locate a position along this massless beam segment we will
make use of the local coordinate xj. If wj(xj, t) is the vertical
deflection of the segment, positive down, the equation of motion is
easily found from the basic beam equation to be

(EI) a4Wj = 0 (1)

where for the sake of simplicity we have chosen the beam segment tohave uniform stiffness properties. (If we could not reasonably
describe the stiffness properties between our desired mass stations
as being uniform, we could of course approximate the non-uniform
stiffness by piecewise uniform segments separated by stations with-out inertia properties, or even if deemed necessary at the cost of
complicating the equation of motion, we could describe the non-
uniform stiffness as an analytic function of xj.) If we are concerned
with a single frequency vibration of the beam, we know that every
point of the beam will move in a sinusoidal fashion; i.e., we may
describe the motion in complex notation as being the real part of

wj(xj, t) = X(xj) eiwt (2)
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Substituting into Equation (1), we have

(EI)j d 4 X (xj) e t=

or X(4)(xj) = 0 (3)

Equation (3) obviously has the solution

X(xj) = Ax] + Bx 2 + Cxj + D (4)
xj j

The physical meaning of the arbitrary constants A, B, C, and D is
easily seen to be

D = X(0)

C X '(0)

1 _1 1 M(00 (5)B 1 ~ X"(O) - 2 "E~2 (EA j

1 X"1(0) V(O)A 6 X( - (EI)j

- iwt
Except for the oscillatory factor e , D is the deflection at xj = 0,
C is the slope at xj = 0, B is 1/2(EI)j times the moment atxj = 0,
and A is 1/6 (EI)j times the shear at xj = 0. We have now essentially
accomplished a first step in the transfer matrix procedure. We have
related the deflections and internal force quantities which describe the
condition or state of the structural segment at a boundary point of that
segment to the state at any point in that segment. In the strict sense,
the mechanical state of the straight beam segment is completely
specified by the continuous deflection function. However, in this and
later examples, we will when we refer to the state of an elastic element
mean not only the necessary, basic deflection components, but also the
internal force and other deflection components, (or equivalently, the
derivatives of the deflection components) necessary to calculate the basic
deflections at one point when they are known at another. We complete
this first step by substituting Equations (5) into Equation (4) and
differentiating thrice to obtain

6



X(x) = V(o) x 3 + M(O) X2 + o(Ox +X(O)

e(xj) = V() 2 + (0)+)(O
(EI) j (EI) x + ()(6)

M (x l) = V (o) xj + M(O)

V(x ) = V(o)

Equations (6) will be the basis of what we will call the field transfer

matrix.

To show by example that other sufficient analyses of the struc-

ture will lead to these same relations, we will now note that Equations (6)

could have been derived from the elementary theory of strength of

materials. By so doing, by means of the following diagrams, we will

explicitly state our sign convention. First, to derive the shear relation

V (0) jI IV (xi) = V(0)

To derive the moment relation

M(0) ( IV(O) V(xj) M(xj) = M(O) + x v (o)

If the moment-area method is used to derive the expressions for

0 (xj) and X (xj), we have

7



_______~X V__ _ _ _ j (0)/(EI)

El

Once again

E)(X) E) (0) + M(O)U Xj + v (0) X
i (E I) i (EI) i

X (X) X X(O) + 0 (0) x + M (0)- + v () .

If we now specialize Eqs. (6) by letting Xj = Iiwe may view the
result as a means of carrying over or transferring the mechanical
state of the beam at the right hand side of station J-1 to the left hand
side of station j. We may easily arrange this series of transfer
equations in matrix form as follows

X-%I -1 1 P P -rX r
ZEI 6EI

00 1El ZEI (6a)
M 0 0 1 1 M

V 3 0 0 0 1 V j-1

8



where both the superscripts (I = left of, r = right of) and subscripts on
the column matrices (called state vectors) refer to a station, and the
subscript on the square matrix indicates that the quantities that com-
pose the elements of this matrix are those of the indicated beam seg-
ment. As mentioned previously, the amplitudes X, 0, M and V
are not the only choice as the four elements of our state vector. (For
example, we could have selected X and its first three derivatives.)
This choice, however, is much more convenient since all of these
elements are of interest in themselves, and, more importantly, they
will facilitate the introduction of the boundary conditions into the
final equation. For the sake of being more concise, we rewrite
Eqs. (6) as

z [F] {Z}r (7)zJ j j-1

where the respective definitions of terms are obvious. The matrix [ F]
is called a field transfer matrix. We remark that if the displacement
and force elements of the state vector are separated and the corres-
ponding deflection and force elements are arranged in mirror image
position, and if a suitable sign convention is chosen, then the
associated transfer matrices are usually symmetrical about the
cross-diagonal. This is the cas e here and in the following two
examples. Another interesting feature of field transfer matrices is
that their inverses can always be calculated by simply writing the
field transfer matrix for the opposite direction.

To have complete freedom of description, another basic trans-
fer matrix, called a point transfer matrix, is needed. It transfers the
state vector across a station. Again let us consider the most general
case; i. e. , let there be a mass, a translational and a torsional spring
at station j. The free-body diagram of station j is as shown in
Figure 3.

Utilizing d'Alembert's principle, we may write:

r k
M. = Mj + (_W2 j.) .0 + k* 0.

r

Vj = V. _ (- 2 p X) -k X

9



k .X

_• 2 j. e.

J ]

3 J

_•• xjI'
~ X I

Figure 3. Forces and Moments Acting as
a Discrete Mass

We also may write, because of the continuity of the deformation
across station J:

r £x. = x.

r = 2.
J J

Again arranging our result in matrix form, we have

Xr 1 0 0 0

0 0 1 0 0 0

(8)M 0 "-o2J 1 0 M

V --k +w2j 0 0 1 j Vfj

10



or

Z}r = [G] {Z}1 (8a)j j J

We are now ready to undertake the analysis of any undamped
Myklestad beam possessing any end conditions. To make clear the gen-
eral case, we choose the specific beam shown in Figure 4 where any
combination of elastic restraints may be present at the three inter-
mediate stations.

0 1 2 3 4

Figure 4. Example Myklestad Beam

Proceeding from left to right, we may by successively applying Eqs. (7)
and (8) write

! r
{Z 1 = [F] 1  {Z} r

1z 0

{Z}r= [G]l [F] 1 {Z},1 r

{Z1 = [F] [G] "'" [GI [F] {Z} r
4 4 3 1 1 0

or more concisely

{Z} I = I r {}r(9
:4  4  0 0

We call [ T ] a transfer matrix; i.e., no adjective. Its superscripts
and subscripts indicate the extent of the transfer of the state vector.
The boundary conditions of our example are:

at (1, 4) X = E = 0

at (r, 0) X = M = 0

11



(A similar result would ensue for other boundary conditions.) Insert-
ing these boundary conditions in the matrix equation (9) we have

,,%It Pt--
0 tll t12 t13 t140

o t 2 1  t 2 2  t 2 3  t 2 4  0

M t 3 1  t 3 2  t 3 3  t 3 4  0

V t 4 1  t 4 2  t 4 3  t 4 4  V
4 4_ 0 • 0

from which we note that we may extract two linear homogeneous equa-
tions, i. e., the submatrix equation

:I tj: t14 I r 
(10)04 tZ z t2 4 o0 0

The existence of a nontrivial solution to Eq. (10) requires that the
determinant of the coefficients be equal to zero, Since these coef-
ficients are all functions of the free vibration frequency, our equation
for the natural frequencies of the system is then

tl 2  t14 r

= A(w) 0 (11)
4 t 2 2  t 0 0

Since A(w) will for this model, be a polynomial in w z of order equal
to the number of intertia parameters, both rotary and translational, a
numerical rather than an exact solution for w is to be obtained in
almost all cases. Of course, all the roots for w2 are real and positive.
Once the natural frequencies are known from equation (11), it is a simple
matter to compute the force and deflection mode shapes for this beam.
We start with Eq. (10) which tells us

L = - V -- V (12)
tl2 tzz

12



If, for example, we normalize (i. e. assign a unit value to) V, we know
all four components of the modal state vector at (r, 0). It is now only
necessary to use the transfer matrices [G(w n) I and [ F(xj]) to com-
pute the modal state vector at any point of continuity on the beam.

The above steps are the basic elements of the transfer matrix
approach. In review, we start at one point of the structure and
proceed to an adjacent point using whatever state vector is necessary
to describe plus transfer the mechanical state of the structure. The
transfer matrices that carry the state vector from one point to another
can be calculated by solving the overall equation(s) of motion of each
structural segment. When the proper field and point transfer matrices
are determined, a transfer matrix from one boundary to another can
be constructed, and then partitioned to solve for the natural frequencies and
mode shapes.

The present analysis could be expanded, for instance, to con-
sideration of the vertical vibrations of a cantilevered beam with a
horizontal bend. We could further slightly complicate the matter by
placing the concentrated masses and rotary inertias on rigid extensions
from the beam axis. This model might be a suitable model for a
cantilevered high aspect ratio wing. See Figure 5.

Elastic Axis/

Concentrated

BeamI I

Figure 5. Bent Beam

13



We won't stop to analyze this model, but only comment on those

of its features that are not found in the previous example. First,

simply because of the horizontal bend, a vertical force or bending

moment on the outboard section of the beam will produce a torsional

moment (and deflection) as well as a bending moment on the inboard

section. Therefore we would have to include the local beam twist and

torsional moment in an analysis of this structure. Secondly, even

without the horizontal bend, we would be compelled to consider tor-

sional twist and torsional moment because the vertical accelerations
of the offset concentrated masses would produce inertial torques

about the beam axis. Therefore, our model would properly include

not only the rotary inertias associated with bending slope deflec-

tions, but also the rotary inertias corresponding to torsional de-

flections, and cross products of inertia.

We could start our analysis at the beam tip and work our way

toward the bend just as in the previous example. (The additional equa-

tion of motion for a massless beam segment is: the effective torsional

stiffness times the second derivative of the twisting angle equals zero.

The equations of motion of beam stations can again be derived using

D'Alembert's principle.) At the bend we simply connect the locally

oriented state vectors on each side of the bend by a matrix that resolves

the outboard set of deflections and internal forces into components

referenced to the inboard coordinate system. (Matrices are a rather

efficient way of handling coordinate rotations.)

We are not limited to models where the inertia properties are
made discrete. Let us now investigate how we may apply the transfer

matrix method to a beam with distributed inertia properties.

14



MI. THE CONTINUOUS BEAM PROBLEM

Consider the case of a uniform beam segment of symmetric cross-
section and of uniform density between two stations, say j-i and J.

See Figure 6.

X.
I JI

S(EI)j, Pj, A.j

j-1j

Figure 6. Continuous Mass Beam

The equation of motion of this segment can be derived from the basic

beam bending equation, It is, for vibrating motion

a4w
EI - = - pA i& (13)

where p is the mass density, A the cross-sectional area, and each

dot above a symbol indicates one partial differentiation with respect

to time. We have dropped the subscript j from our various quan-

tities for the sake of simplifying the writing of our equations. If we
wish to examine a single frequency sinusoidally varying motion, we

may again describe the vertical deflection as

w(x, t) = X (x) e ibt

Thus our equation of motion reduces to

Eld4X pAwzX

This equation may be rewritten as

d4 X X = o (14)

15



where a = PAW2  (14a)
EI

Four independent solutions to the differential equation (14) are exp(ox),
exp(-ax), exp(iax), and exp(-icx). Note that these solutions are
independent regardless of which of the four roots of a4 is used, and in
fact, the same four functions are obtained regardless of which of the
four roots is used. For later convenience we will specify the use of
the positive real root. Now any four independent linear combinations of
the above four solutions are also a complete set of solutions. The most
advantageous set of combinations is

f~x) 1
f (x) = 1 (cosh ox + cos o-x)
02

f1 (x) = - (cosh Tx - cos ox)1 (15)

f1 (x) = I (sinhox + sin crx)
1

f 3 (x) = - (sinhox - sinox)

The advantages of this set of combinations, the reasons for their
selection, are

(1) f 0 and f 2 are real even functions of x

f, and f 3 are real odd functions of x

(2) The index order rotates under differentiation or integration; e. g.

f' (x) = of 3 (x)

f1 '(x) = T fo (x)

f, (x) = rf1 (x)

f3' (x) = afz (x)

-and (3) f 0 (0) = 1; f (0) = 0 for j 4 0.

Then, when we write our solution in the standard form

X(x) = Ao fo (x) + Al f, (x) + A2 f2 (x) + A3 f3 (x) (16)

we can see by virtue of items (2) and (3) above that we obtain the happy

re suit
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Ao = X(Q)
A (0)

SA 1 =X' (0) or A

T2A 7 X"(0) or A (17)

T A3  X"'(0) or A3  3 --
0r El

Therefore
o (0)

X(x) = x(o)fo (x) + f- (x)
0.

+ ( fz (x) + V f0 (x) (1 6 a)74 )fE I 3EI

So, once again by obtaining a suitable solution to the equation of motion
of an elastic element, we have obtained the basic relation for the field
transfer matrix of that element. The remaining relations are, of
course, obtained by differentiating Eq. (1 6 a)

X' (x) = rX(o) f 3 (x) + E (0) f0 (x)

SM(0) f, (x) + V-0EfI+ 0El (lf 2 (x)

X,'(x) = T. X(0) f2 (x) + cr 0 (0) f3 (x)

+ M (0) f0 (x) + V(0) f (x)E1 (r EI

X"'(x) = a-3 X(0) f1 (x) + (2 E (0) f2 (x)

+ - (0) f 3 (x) + V() fOWx)
E1 E1

17



Combining these results for xj = Ij in matrix form, we have

xI fo (1) xf2 (I f 3  r
r (TZ E I 1 E0

0 -f3 (1)) f f (M) a-ED 0

T (rEI

(18)

M a-Z EIfz (1) a-EIf 3 (1) f 0 (1) Li M

V T 3 EIf1 (1) a-2 EIf2 (1) a-f3 (1) f 0 (1) V

Note that this field transfer matrix is also cross-symmetrical.

At this point, let us include damping effects as part of our
analysis. We do so in the realization that for a damped system
sinusoidal motion exists only when the system is subjected to a
sinusoidal excitation. Structural damping at joints and in elastic
segments can easily be included in the conventional manner in our

equations of motion. At joints, that is at the location of elastic
springs, we introduce structural damping by simply replacing
kby k(1 + 16) and k by k (1 + ic) where 6 and E are structural
damping factors. Similarly, structural damping in an elastic
element is described by replacing EI by EI(1 + iy), where y is
another structural damping factor. Of course, these changes in the
equations of motion are carried through in identical form to the point
and field transfer matrices. We may also take into account an
equivalent viscous damping by adding another term to our equations
of motion. For example, the equation for an elastic segment becomes

EI(1i+ iy) - + c& + p A;h = 0

with no external excitation on this particular segment. To solve this
equation we again let w = X (x) exp (i w t), and substitute to obtain

d4 X pwz A - icw = 0 (19)
77 - EI(l+Iy)

18



We can return to the form of equation (14) by simply redefining a as

4 = pW2 A - icw (19a)
EI(l+iy)

Thus, again, the field transfer matrix, Eq. (18) retains the same form.
In this case all the quartic roots are complex. As before it is permis-
sible to use any one of the four roots as a in the computation since we
only requirethat sinhux, coshox, sinax, and cosax be independent of each
other.

Thus, since the form of the transfer matrices remains unaltered
by the presence of damping effects, in our subsequent examples we will
take for granted the presence of the various damping parameters in
their appropriate locations.

As a final comment, before we pass to the topics of forced
vibration and skin-stringer construction, the method of transfer matrices
can also be applied to beam grids and frames[ 2 ]. Very briefly, a single
path through the structure is chosen and by means of the continuity and
equilibrium equations of the Joints and the boundary conditions at beam
ends other than the two that mark the beginning and end of the chosen
path, the structure that lies off the chosen path is represented by
point transfer matrices on the chosen path.
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IV. RESPONSE TO FORCED VIBRATION

Before we see how to use transfer matrices to calculate the

response of a structure to forced vibration, let us pause to review

a bit of the basic theory of mechanical vibrations.

The response to a structure under forced vibration, either

deterministic or random, can be described by either of the following

two basic functions [6] :

the impulse response function h (t)pq

the frequency response function Hpq ()

The respective meanings of these two functions are as follows. Let the

structure be at rest at t = 0, and let the excitation be a unit impulse*

applied at station q at time t = 0. Then hpq (t) is the response at

station p. See Figure 7 below. Let the structure be stable (say

positivply damped), and let the excitation be a unit sinusoidally varying

load (e co) applied at station q. Then the stead, state response at

station p is Hpq (M) eiwt.

h(t) or H(w)e i~t I (0) e •i~t

0 01

P qI

Figure 7. Beam of General Configuration

* A unit impulse at time T=t is described mathematically by the

Dirac delta function, 6(t-T). Its definition is, for an arbitrary
function r(t)

Co t+E

r(t) = 6(). 5(t - T)dT = I F(T). 6(t - T)dT

where e is arbitrarily small. It is sometimes described as a func-
tional because it is not a function in the ordinary sense, i.e. while
6(t) = 0 for almost all t, it is not specifically defined for t within
the interval (t- E, t +e), 6 arbitrarily small.
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An arbitrary forcing function can be considered as a continuous
sequence of impulses, i. e. we may write

P (t) = f+° P (")6(t- r)di-q -to q

A response at station p to the forcing function can be described with
the aid of the appropriate impulse response function for the two stations,
i.e.

+oo0

(t) =f - P (T) h (t- T)dT
p -CXD q pq

On the other hand, if a spectral analysis of the forcing function is per-
formed so that

Pq Wt = + 0T; (w) e iWt dw

q -OD q

where 1 • -• +a, -iwt
Pq() = -f + P (t) e dt-0 q

then the response to the forcing function Pq (t) can be written

(t) f "0 Pq (w)H (w) e dw

p ODpq

Using a few simple steps we can show that

00- icot

H (w) foo h(t) e dt
pq -00

h (t) 1 DH (w) eit dw
pq pq

That is,outside of the adjustment of a constant factor, these functions are
Fourier transform pairs.

A simple example of these functions is to be found in the case of
a single degree of freedom system. Here p = q = 1 (omitted), and
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mwex ( ý nt + iw n _•2 for t>O0
n n

h (t) =t

0, for t < 0

and

1
m(ciz -Wz + Zirwwn)

n

The technique of transfer matrices can be used to compute
frequency response functions. For illustration, consider the non-
uniform beam with end conditions sketched below.

SII -

STA STA STA STA
0 j , k N

Figure 8. Segmented Beam of General Configuration.

The beam is approximated by a finite sequence of uniform sections
between stations. Any arrangement of interior elastic supports may
be included in the problem. We are interested in obtaining the response
at station k due to a unit sinusoidal force at station J. We may need
to be more specific about the response, that is, decide whether the
response on the left hand side or the right hand side of station k is the
response to be calculated. For the sake of definiteness, let us decide
we want to know the response on the right hand side.
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To develop the equations in a natural way, let us again start at

the left end of the beam and proceed to the right. By our previous

work, we can immediately work our way to the left hand side of the

impressed force.

I r r
{z} - [T {Z}3 j 0 0

The impressed force is simply introduced by writing

r0
{Z} r = r {Z} +

(Recall the factor e is common to all terms of these equations.)

Proceeding from this point, we have

r r r r{Z } = [ T] {Z}
k k

so that

{Z} r [ T ]r {Z} + [ T , (20)
k k 0o k J

This is our first of two basic equations. In expanded form it is

X r(20ra)(= r[ T ( + [T 0 ( (a)Mk 0 0 k 0
V~k (jo 1

where we have inserted the boundary conditions at station 0. In

addition to the elements of the state vector at (r, k), the slope and

shear at (r, o) are unknown. These elemnreits can be eliminated by use

of the boundary conditions at station N in our second basic equation,

which is merely a continuation of the first equation. It is

0 1 [ T ] r 0 +IT] 0 (21)

= N 0 ( 2 0

S( JT(3
23



Now, from the above two (4 x 1) matrix equations, (20a) and (21), we can
extract the following two equations, respectively.

Xrr -t 1 4 r r r r

(tZ 2 tZ 4 + tZ 4

[ t3 2 t34 k t34
Vjk J 42 t 4 4 j 0  t44 +

14] r 
Jr + uf

Then solving the second of these for Jr If

= I_ t l 2 t 4 r tl 4 I 4
N t22 t24 o NLt24

and substituting this quantity into the first, we obtain

r r r r rt
X t 2  t 1 4  t 2 2t 4

:: : (iI4 iz t]J 1 + (22)

V t4 2  t3 4 4 44
Sk k 0 k_0

The left hand side is the set of amplitudes of the response as functions
of the frequency w due to a unit sinusoidal force excitation, which by
definition are the frequency response functions for these circum-
stances. Of course, the frequency response functions for a unit
sinusoidal moment can be obtained in an exactly analogous way. The
result is

"r r r r rx t 2  t1 4  t1111

M0 = t22 tZ 4 TL 2 tj] r)N[ 3 j + t3 (22a)

M t3 2 t3 4 II t~ 2 4  t2 4)t 3vI t4 Z t4 4 k t43
. k k k_

Of course, other boundary conditions lead to the selection of other
elements of the transfer matrices.
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V. FLAT STRINGER-PANEL SYSTEMS

We will discuss two types of stringer-panel systems. We will
begin with flat stringer-panel systems, and when we have determined the
method of solution for these, we will proceed to discuss the more
ocmplex case of curved panel systems. A sketch of a typical flat panel
array is shown in Figure 9.

Frame (Simple Support)

Str-nger !_

Frame (Simple Support)

Panel No.

12 j

rFI tL L
1 2 j-1 j N

Stringer No.

Figure 9. Flat stringer-panel model

To simplify the presentation of both the flat and curved panel
analyses, we will limit our attention to free, undamped vibrations.
The treatment of the cases of damped and forced vibrations, as has
been explained, is little different. A simple forced vibration example
will be given in Section XII.
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Note that, while in the case of beams we made no restric-
tions concerning the boundary conditions, in our flat panel mathe-
matical model we specify simple support boundary conditions at the
frames. As will be seen, this particular arrangement allows us to
reduce this essentially two dimensional problem to a one dimensional
problem. As pointed out before, once we have a one dimensional
problem, we may employ the method of transfer matrices. Most
actual construction is not such that the conditions of simple sup-
port exist at the frames. However, because the distance between
stringers is usually one half or less than one half the distance
between frames, and since fatigue failure can be expected to begin
in the panel skin adjacent to the center of a stringer, this model
is quite practical for the study of the important problem of fatigue
stresses in actual panel construction. More generally, this same
argument can be extended to claim validity for applying the results
of this model to construction with different boundary conditions at
the frames if the response of interest is located near the mid-
distance line between frames.

The standard plate bending equation of motion for the panel
skin is

a4w + 4w 34w h

Dx 4  + 2 ax2 a + -p w (23)

For a discussion of the underlying assumptions and derivation of
Eq. (23) see Reference [7], pages 39-1 through 39-3. In this problem,
with simple support at the frames, we may obtain a solution in the
form

w(x, y, t) = eiwt Yn (Y) sin _ (24)b

where we take advantage of the known modal form in the x-direction.
For each n, the function Yn is the amplitude function in the y-direction
It corresponds to X(x) in the beam problem, and this unknown is, of
course, only a function of one space coordinate.

Substituting Eq. (24) into Eq. (23), after cancelling exp(iwt)
and sin(mrix/b), we obtain for each stringerwise modal number n
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(4) - +•--\ Y + Yn (n h Yn (.25)
Z~~(B'r Yfl+n) ~

We have two unknowns in the one equation, w and Yn" We need

to determine those special values of w (in mathematical terms the

eigenvalues, or in dynamical terms the natural frequencies) for

which we can also determine solutions for Yn up to an arbitrary multi-

plicative constant, (the eigenfunctions, or normal modes of an undamped

system.)

We can write the characteristic roots of Eq. (25) as +o , -ai,

+icz, and -iT 2 where

= _12 (26)

(D/4 1h/4 1/4 2

Since for each n, (D 1nr /h P b) is the smallest natural

frequency of an infinitely long panel row without stringers[ 8] , and

because the addition of stringers and boundary conditions at a finite

distance would increase the stiffness and hence the natural frequen-

cies of such a built-up, finite system, we can conclude that U2 is a
real quantity.

Let us now turn to our transfer matrix techniques. We are

here interested in determining the deflection, slope, moment, and

shear in the panel skin along any plane perpendicular to the x-axis.

The deflection and slope, of course, depend upon Yn and Y'n

respectively. Since[71

My +D -- 2-w +

Sa Yw aw

V =+ D a- a-- + a 2
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we see that we can describe these quantities of interest by employing
Yn and its first three derivatives. Therefore, as a stepping-stone toour final state vector Lyn Yn' Mn VJ, let us consider the state vector
LYn YA Y" Y'J and discover how it may be transferred across a field,i.e. across a panel.

We already have the first part of the solution to the panel prob-
lem in terms of the solutions for the chatacteristic roots of our reducedequation of motion, Eq. (26). These roots, of course, allow us to
write a solution for Yn in terms of (e.g. expodential functions of) wfor each panel. Then, analogous to the continuous beam problem, our
next step is to express the panel solution in a form appropriate to our
state vector Ln Y' Yn n' . Again we start by expressing our solution
in the form of the sum of four independent functions, i.e.

Yn(y) = Ao fo(y) + Al fl(y) + A2 f 2 (y) + A3 f 3 (y) (27)

so that among other conveniences, Ao = Yn(0)' A1 = Yn'(0), A2 = Yn''(0),
and A3 = Yn (0). As in the case of the beam, we by-pass solutions inthe form of exponential functions, and concentrate on combinations ofthe hyperbolic and circular functions. Specifically, these independentsolutions are sinh oly, cosh oly, sin 02y, and cos o2y. The combination
of these that we seek is

fo(y) (22 cosh + 2 cos 2 Y)012 + 022 (2o o2y

1 (yy)1 2 012fl(y) 2 2 (-a sinh oy+ - sn 2y
012 + 022 0 sinh 0 2y sin o2 y)

S1 2

(28)
f 2 (y) 2 1 (cosh oly - cos o2 y)

01 + 022

f 3 (y) a0 2+1 2 sinhoay sin_2y)
1 2 2

(A general procedure by which we can calculate the desired functional
forms of our solution will be illustrated for the more complex case of
a curved panel segment.) The functions fo and f 2 are even while fland f 3 are odd, fs(r)(0) = 0 when r # s, and fs(r) = 1 when r = s,
for r, s = 0, , 2, 3. However, because 01 # 02, f'(y) 0 fs+l (y);
i.e. the nice index rotating property that was present in the case of
the beam problem does not exist here. As a result of this, we will
require more than four functions to construct the transfer matrix for

Y1 Y11 Y2
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Now that we have as our solution Eqs. (28), we can write

Yn (Y) = Yn (0) fo (Y) + Yn (0) fl (Y) + Yn" (0) f2 (Y)

+ Y"' (0) f 3 (Y) (27a)n

Thus, again, by differentiating and then setting y =k, we can establish
the relations between Yn and its derivatives at y X j on one hand,
and Yn (0) , YI (0), Y 4. (0), and YII1 (0) on the other Hand. These
relations in matrix form are

A r
y y

n n

n n

=h e R y =e (29)
n n

n n

where y =X. corresponds to (1, j) and y =0 corresponds to (r. j-1),
and

CO S C-2 S_3
-1 -

S, CO S_1 C[RIj=- ,2-

C2  Si Co S-1

S3 C2  S1  CO

where CO = fo (Xi)

S_1 f, (X%)

Q- 7= f2 (X)

S_3= f3 (Xi)
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1 2
Go + z (0.2 cosh a-, % + 0.T cos (0rz )

0.1i .2 + Cz

Cz = TIz 2 ( (cosh (i r - Cos •02
Cr + -( i

S-1= TI, + Cz ((r, sinh cri X. + 0.r sin a- 2)
3 3

SI z z (0.2 sinh 01 X- T2 sin vz X.)
S, I 3

U1 +3.r
Si = + . (0.1~ sinh 0.i X. - 0.3 sin 0.2 Xj)

S3= 3. +.0zZXj

S2 (0.2 sinh 0. , X + 0.z sin Xr )
S 3  = 0 i Z+0. G 0i1z .2

At this point we will convert the state vector yn Yn' Yni YI'J
to one which will represent the variations in moment and shear in the
y direction. We do this by expressing the moment and smax in the
same form as the vertical deflection, i.e.

i (•t
M = e Mn (Y) sin nl__x

y b

(30)
i6)t

V = e Vn (y) sin n.Tx
y -b

From Eqs. (27) and (30), by means of the orthogonality properties of the
sine function, we can obtain

M (y) = D [Y" -v Y ]n n bn

(31)

V (y) = D [Y"' - (2-- v)(-rJ Y]
n n b n

This immediately leads to the matrix form
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y Y
n n

y, Y(
n n

{Z} = M =[ B]jy, (32)

V Y "'t

n n

where the conversion matrix and its inverse in detail are

1 0 0 0

O 1 0 0
[B]. =

J -Dv(r) 0 D 0

o(Z-V)(RI) D 0 Do
10 0 b

1 0 0 0

[B] 0 2 1 0 0
=w 0. 1 0

7)• z D

o (z-v)In~F) o0
b Dj

Now we are in a position to write

SI r
Yn Yn

n n

n n

Mn - F] Mn (33)

V V
n n J-n
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where [F]. = [B]j[R]j [B]: is, of course, the field matrix
which trans/ers the state vector LYn Yn Mn VnJ across a panel.
The matrix [ F I is symmetrical about its cross-diagonal, and
[F(bn) 1 = [ F (-bn)].

Now that we can leap panels as we wish, we turn to our last
hurdle, the crossing of stringers. To find the point transfer matrix
which transfers a state vector across a stringer, we must take a
closer look at the stringer. The stringer does not interfere with
the continuity of the deflections and slopes in the skin on either side
of the line of attachment between the stringer and skin. Thus, very
simply,

Yn (r, j) = Yn (1, J)

Y' (r, j) = Yn (A, j)
n

However, the stringer, because of its elastic and inertial properties,
does produce what we will consider to be an abrupt change in the
moment and shear in the skin at the line of attachment. To determine
the form of the change in the shear and moment components of the
state vector we will make use of an existing theory which deals with the
bending and torsion of a general thin-walled member of open cross-
section. This theory is the result of a number of distinguished
engineers, a few of which are: Timoshenko (in 1908); Wagner (in 1929);
Goodier (in 1941); and Argyris (in the early 1950's).

The basic deflection equations of the stringer are

EIw (4) + EI v (4) =-

S(4) (4)
EIy Vo + El71 wo = (x) (34)

EC 4( 4) - GC 1" = (x)w

where I , I , and I are the centroidal moments of inertia and pro-
duct moment of inertia; G is the shear modulus of elasticity; the sub-
script o refers the deflections w and v to the shear center ; C is the
warping constant of the stringer cross section with respect to thew shear
center ; C is the Saint-Venant constant of uniform torsion; F and [
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are the distributed loads at the shear center along the stringer in the
z and y directions respectively; F is the distributed torque about the
shear center; and primes indicate differentiation with respect to x.
The first two of equations (34) can be derived by simply (a) super-
imposing the strains of a stringer cross-section due to curvatures
in the two perpendicular planes (plane sections assumed to remain
plane); (b) integrating the corresponding stresses to obtain the values
of the moments in terms of the deflections; and (c) differentiating to
obtain the distributed loads. The derivation of the third of Eqs. (34)
can be found in Reference [7] , section 36. 8.

The distributed forces and the distributed torque about the shear
center are a result of the acceleration of the stringer, and (reversing
our original point of view) the differences between the forces and
moments in the skin on opposite sides of the point of attachment S.
Specific ally

T (W V r + V ) -p A

S(x) = (N - N ) -PA (35
(x)= (Mr-M 1 ) - (r NI )s - p cz

4ýz cz

+ pAiw c - J Wc y c

where N• is the amplitude of circumferential tension per unit length;
p is the stringer mass density; A is the stringer cross sectional
area; Jc is the stringer area polar moment of inertia about the cen-
troid C; c C ., and s are distances illustrated in Figure 10, and
the subscript c on the deflections refers them to the centroid C.

Our basic equations are expressed in terms of the deflections
at the stringer shear center 0 and the stringer centroid C. Our
purpose is, however, to express ourselves in terms of the y-coordinate
continuous deflections of the panel skin. This can be accomplished by
noting that the deflections of the stringer and those of the skin are the
same at the point of attachment S. As can be seen from Figure 10,
the deflections of the stringer at point S (no subscript) are geometrically
related to those at the centroid and shear center as follows
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w = w - s (1-cos wo

V = VO - sz ký( 
6V=VO ~z 4 ' (36)

wc =wo + c y

V = V - C LC 0 Z

Substituting these relations into our equations of motion (34) and (35), and

combining and rearranging them, we obtain

Mr _ MI = ECws 4( 4 ) _ GC 4" + EI sz v(4)+ EI 8zW(4)

+ P 3" - pA(c s ) V + pAc y

Vr V- = _EI w 4 ) - EI v(4) EIs z (4))

-pAW - pAc 4"y

N~r - N~ = El•v4 + EI w~ + EI• sz(4

z z+ pA*V + pA (c z- sZ)

where C = C + I s 2 is the warping constant of the stringer
cross-secwion wAh respect to S as the center of twist, and Js = Jc +

A c 2 + A (cz - sz) 2 is the area polar moment of inertia of the

stringer cross-section with respect to S.

We now recognize that the flat panel system undergoes negligible

lateral motion, i. e. mathematically v = 0. This is in keeping with the

underlying assumptions of our equation of skin motion, Eq. (23). That

is, Eq. (23) is a bending theory equation in which bending of the plate
produces no horizontal motion of points in the plate middle plane. (On

the other hand a bending theory of curved panels will obviously have to

include lateral deflections.) So, substituting v = 0 and 3w = 4 into

Eqs. (37) we obtain
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Mr - Mk = ECws a5w - GC ý3w

ax 4y ax2ay

+ EI s + PI 3w + PA c aw

x4 z 4 s ayat 2  
Y 3t 2

(38)
aW• El S 5wVr _ V =-EIn 4"- EIn s 5

a x4 z ax
2

a y

PA 22w - PA Cy a3w
at2 8y 32t

We conclude the derivation of the point transfer matrix by substituting
the expressions for w, M, and V, Eqs. (24) and (31), into Eqs. (38) to
arrive at

(Mn)r _ (Mn)£ = [ECws (n-)4 + GC(") 2 _w2 pi ]Y'n

+ [EITJ Sz(n)4 -w 2 pAcy]Y

= Yn + c Y'n (39)

(Vn)r - (Vn)' = -[EI (nL) 4 
- w2pA]y

- [EI Sz - W2 pA c y]Yn
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-y - dy'
n n

AWe note that the quantities , d, and e are functions of the natural
frequency. Thus, in conclusion, we can write

{z}' = [G]Iz {z.40

where

[G] : 1 0 0 0

0 1 0 0

a 0

-e -d 0 1
S• j

and the subscript j associated with [GI indicates that the elements of the
point transfer matrix are computed fvom the physical data of the jth

stringer.

The only exceptions to the cross-symmetry of the stringer transfer
matrix are the elements d and -d. These exceptions are a result of the
stringer cross-section being unsymmetrical; ie. d=O if the section is
symmetrical, and when the direction of transfer of the state vector is
reversed causing a far-side eccentricity to become a near-side eccen-
tricity, d becomes -d.

We now can proceed to calculate the natural frequencies and modes
of the entire panel array. Let [TI, with proper subscripts and super-
scripts, denote the general transfer matrix relating the state vectors at
any two stations on a panel system. For example

z[T]. = [F]k [G]k_ [F]k_ [G] [F]

k jk -1 -1J+1 J5+1

and

rk[T] = [G]k [F]k [G]k-1 ... [F]j+1  [G]j
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For the purposes of discussion, let us assume that the two extreme
ends of the panel system are supported by stringers. In this case we

write

{Z}r r [TI P { (41)
N N 0 0

where the state vectors are for the free edges just outside the lines of

attachment of the end stringers. Hence in both state vectors the

moment and shear are zero; ie.

{ j ,r {Z£Y 9r

N n 0n

"0 0

o 0
N 0

Thus the following two by one matrix equation can be extracted from

equation (41).

(:3• KE::1 :t]• fYn (42)

For this equation to have a non-trivial solution, we must have the fre-

quency determinant equation

r£

t31 t32

= A(w) = 0 (43)

t-41 t42 j

N 30

Fo tiseqatontohae nn-riia sluio, e us hveth38e



which can be solved for the natural frequencies of the skin-stringer

system. The simplist method of obtaining a numerical solution to
this complicated transcendental equation is that of graphing A(W). Its

zeros are, of course, the natural frequencies.

For a given root w of the frequency determinant equation, the
associated normal mode can be obtained as follows. Let Ynat (X, 0)
be arbitrary. Then the magnitude of Y' at (Z,O) is determined from
equation (42) as

t 3 1 t41Yn _Yn - -- Yn
Yn t732t2

Let us say we are interested in the modal deflections of the jth panel.

By use of transfer matrices we can obtain

tZrr r
[Z•.I= _[T]' onl (44)

i-ig
)(0

From this we have {y}r =

J-1

Y O) r

Y [B-{z}Z (45)

n* C

Yn' (0)

The elements of {y r}J are the constants A0 ,A A2 , andA3

appearing in equation (27a) from which we can calculate Yn(Y)"
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VI. CURVED STRINGER-PANEL SYSTEMS

The analysis for curved panels is more involved that that for
flat panels. It is possible to approach the problem by means of a
distributed mass mathematical model, but to reduce the complexity of
the problem we will lump the distributed panel mass along discrete
"mass lines" running parallel to the supporting stringers. The mass

lines will be numbered ... , j-l, j, j+l, .... .The corresponding masses

per unit length of mass line are designated ... , o *j-l'5 , lj j+l"'
and the rotationalmoments of inertia per unit length of mass line are
• '' Jj-1, J j, Jj+l, ... . The line masses are connected by massless

segments of thin cylindrical shells. This discrete approximation of a
curved panel is depicted in Figure 11.

The usefulness of this model is as before dependent upon being
able to consider the panels as simply supported at the frames, i.e. along
the curved edges. When this ability exists the problem is reducible to
one of one dimension, and the same general procedure as carried out in
our previous problems will yield a solution.

We will first concern ourselves with developing the field transfer
matrix, the matrix which will carry us across the massless shell seg-
ments between mass lines. We will base our development of the field
transfer matrix on Donnell's shell theory, an approximate theory which
is obtained by eliminating those terms of the more exact theory which are
of minor importance to the case at hand. For ar 1 .unloaded and massless
cylindrical shell element, the Donnell equations L 7 J are

2 a2u 9Wa~a - + 1 (1-,) 22u + I a(l+-v) -2v - 0
3X2 2 Wq2  2 aXa4 DX

1 32u 32  i a)_2 v - w-a(i+v) 2-- + -- + -- a 2 (1l_ ) = w 0 (146)

2 axaý 42 2 3X2 3e

3u 3v I'_t 3'w ___ _4w

va 'u + 'v - w - k a4 +2a 2 a4w + = 0
aX4 aX 2 yý 2  Del

where
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Figure 11. A Typical Curved Panel
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a = the radius of curvature of the segment (note that

this quantity may change from segment to segment)

k = h 2 /12a 2

v = Poisson's ratio

4 = angular coordinate of the shell segment
(a4 corresponds to y of the flat panel)

These are two second order and one fourth order partial differential
equations in three unknowns, the displacements u, v, and w. They can
be combined into the following single equation of the eighth order in
one unknown.

a 8 kV 8 w + a4(l-V2 ) 94w 0 (47)3x4

where V2 = a2  + 32  and V8 =
+ - _V8 = (V )

SX 2 a 2 42

With simple support conditions at the frames, the solutions for the case
of a single frequency oscillation can be written as

u = eiwt Tn(O)cos' n'x

b

v = eiWt Tn(4)sin nx(48

b
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Substituting the above expression for w into equation (47), we find that

Cn(€) must satisfy the following ordinary differential equation.

(8) - 4q 2 (6) + 6q (4 ) 4_ 6 n
n n n % n u n

q+ (qn p4)n 0 (49)

= n•___a = 4 12a2(1-
where =Ln b and p - h 2_(I-v 2)

The eight characteristic roots of this equation can be written as

Pcn +

or, to better suit our purposes, in real and imaginary component form

as

+ (Y1 - 61) and

* (Y2 ±6 it 2 )

The values of these components work out to be

Y, = /jý(qn2 + 12 qnp + p2 )1/4 cos(i arc tan P
Y/7 qn + P

2 + /2 qp + p2) sin(! arc tan ) (50)6,~~~ =%qnqý2r 
+ P

Y2 - q 1 cos[ arc tan pl(vr%- p)]

/h 1
62 = VO(q.2 - qnp + p 2 )1/4 sin[- arc tan p/(/2 qn -p)]
2 n2 nP)

and, in all cases the principal value of the arctangents are to be used.

When the characteristic roots are expressed in terms of their real and

imaginary components, we can say that Eq. (49) is satisfied by any of

the following eight beharmonic functions
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coshy 1 "* cos6 16, sinhy " sin 61,

coshY24) cos6 24, sinhy 24) sin 62ý,

sinhy 1 • cos61 , coshy 14 sin 6 1,

sinhy24) cos6 2 ¢, coshY24) sin 62Y.

The eight solutions we will use will be linear combinations of the above

solutions so as to facilitate the construction of the field transfer matrix.

We will write our desired solution in the form

7
S(4) = X Ai f( (51)

i=O

and, so as to have even subscripts of f imply even functions of €, we

further write for i=O, 2, 4, and 6

f. = a"c.shyl± c0s6 1 ) + a i 2 sinhy1 ) sin 61

+ a i3coshY24 CS624 + ai4 sinh¥2ý sin 62(52)

and to have odd subscripts of f imply odd functions of t, for i=l, 3, 5 and
7

fi = aiisinh YI cos 614 + ai2 cosh y1 ) sin 61€ +

(53)
ai3 sinhY24 cos 624) + ai4 cosh Y24 sin 624

Before we can construct a field transfer matrix, we must agree on

a suitable state vector. The eight quantities necessary to specify the state

of the cylindrical shell segment are

n , n' ai , (M )n (V )n9 (N n' and (N4)x)nnTn n)n'n4-n' 4n'

These eight quantities in the order given will constitute our state
vector. The meaning of the last four quantities is to be seen from
the following relations[ 7 ]. The second part of these relations are
part of Donnell's theory of cylindrical shells.

M4  = eiwt (M 4)nsin nx£ = D(  . 2W +• V x2)
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S eit(V sin n =x . D [ 1 a 3 w ___ a ____a 0cx2

N = ewt (N )nsin n! x = Eh 1 av wa + -
n i-V2 (a a + x

and

N = eiwt (Nx)n sin nx (54)

= Eh a! . _u_ + 3_vv

2(1+v) (a 0 ax

See Figure 12 for visualization of Mý, Vý, Ný, and N~x. From these

relations, Eqs. (54), and their counterparts for the deflections,

Eqs. (48), we can see that

(M ) depends upon 4'" and (D

c n nfn

(V p)n depends upon D'i"ln and 'n

(N ,)n depends upon 'ni, Pn, and Tn

(N~x)n depends upon T'n and Tn

Therefore our initially chosen state vector can be replaced by a state vector

composed of the eight quantities (n, ('Dn' cr', n '"n, nPn Tin Tn and

T'n. Moreover, from the second and third expressions of Equations (46),

we find that Tn can be expressed in terms of T'n, 'n' 'D'n' and Dn (4),

T' in terms of Ofn Tn, and Ti Thus L DIn ("n (Dil (
ngnn, n'JP n n n D

n •' 2Jis still another possible state vector. It is this latter

form of the state vector that we shall use as a convenient temporary

replacement for our initially chosen, more descriptive state vector in

order to determine the essential features of the field transfer matrix.

Once this is done we will use a conversion matrix to return to our

initial state vector.

At this point we return to equation (51) and resume our

search for the field transfer matrix. Another attribute that we will

require of our solution is that the fi(ý) are chosen so that
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A0 = IDn(O) AI = V'n(O)

A2  = ("(O) A3  = 'Pn(O)

A4 = n(4)(0) A5 = n(O)

A6 = T'n(0) AT7 = 'n(0)

One further consideration before we fully develop our solution: the

solution for 'n is not independent of O. From the second and third

equations of (46) we may obtain

T" n + vqn 2 tyn = 711lp In + 1n2 (Dfitn + r'3 n(5)

(56)

where v 11 = 1 + I+2 k qnn4

i-V

n2 = -2 ( 142 ) k qn2
1-V

1+2 k
T3= 1-v

Now let us define
7

n(O)= I Ai gi(¢) (57)

i=0

Then

Ai(g"i + vn 2 gi) =i Ai(n f'i + n2 f'i + n3 fi

Since this is true for any set of A., Eq. (56) becomes a relation be-

tween the functions gi(O) and fi(€4 for any particular i; i.e.

g" i + -qn 2gi = nl f'i + n2fi + n3 fi(58)

We note that gi(O) is an odd function if fi(f) is an even function, and

vice versa. A property of the f i functions, which we will use again

later, is their essential permanence of form under differentiation ex-
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cept that the odd functions become even, and vice versa. Thus a solution
for gi(*) may be written in the form

gi (¢) = ýil sinh y14 cos 61ý + 4i2 cosh Y1¢ sin 61ý

(59a)
+ ýi3 sinh Y2ý cos 62ý + Bi4 cosh Y24 sin 621

for i=O, 2, 4, 6;and

gi(9 ) = BiI cosh Yl4 cos 61ý + ýi2 sinh y1¢ sin 61ý

+ ýi3 cosh Y24 cos 62ý + 3i4 sinh Y2P sin 62ý

for i=1, 3, 5, and 7.
It will be convenient to collect these various definitions of f and gi
into matrix form as:
for i=O, 2, 4, or 6.

fi() a il i2 Ui 3  ai4j {

(60a)

S= L'i i2 6i3 B41 IE0

for i=l, 3,5, or 7

f iiý = Lai i2 ti 3 i4] I fE.

(60b)

gi() = Lk1 ki2 ýi3 ýi4j {Ce}

where

{Ee} = cosh y1i cos 61ý

sinh yl¢ sin 61ý

cosh "2ý cos 624

sinh -Y2ý sin 62ý
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0 = sinh ylý cos 61ý

cosh y1¢ sin 61i

sinh Y2ý cos 624I

cosh Y2' sin 62ý

To obtain our desired solutions for In and Yn we have to evaluate four

constants for each of eight fi functions and each of eight gi functions

or a total of sixty-four constants. We begin by returning to our differ-

ential relation between Pn and Tn in order to relate the a coefficients

to the a coefficients, and thereby reduce immediately the problem to that

of evaluating thirty-two coefficients.

As a step preliminary to shaping the relation between the a and B

coefficients, we want an economical means of describing differentiation

When properly organized, straight forward differentiation yields

d

for i=even, and

d fi(o) = Lail ai2 ai3  aiJ4 ] [D] {fe} (61b)

for i= odd, where

[D) = -61 0 0
61 ¥i 0 0

0 0 Y2 -6 2

10 0 6 2 Y2

Of course, the similar situation that exists for gi(ý) can easily be deduced

from the above. Therefore differentiation of either fi(ý) or giko) is

equivalent to the application of the matrix of transformation [D] to the

opposite column matrix of biharmonic functions; that is, for example,

differentiation of f i with i even, means replacing {ce} with[D] {&0}.

Now we are ready to relate the 6 coefficients to the a coefficients

by means of Eq. (58). Direct application of the differential operator

y~elds

22

L i_] ( [D) + vn2 []

t~J (nl [D] + n2 [D] n3L )
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or

Lai] iK] = Laj.J[L]

Lail = ai[L][K]-l (62)

where [I] is the identity matrix, and the definitions of [K] and [L]
are clear. Let the coefficients for g'(O) be Kil, K12 , K13 , and K14 ,
and those for (9) be Til, Ti2, Ti 3 , and Ti 4 . Then

LKiJ = LaiJ [D] [L] [KI-

LTJ = [ij (D] CLI [K]-1

The task that remains is that of specifying the thirty-two a
coefficients. We do this by returning our attention to Eq. (51),
Eqs.(52) and (53), and Eq. (55). It is our purpose to guarantee
that Eq. (55) is satisfied. Since (1) we segregated the functions
fi(ý) and gi(O) into odd and even functions, since (2) we are inter-
ested in the values of these functions for zero arguments, since (3)
and even number of derivatives of odd functions and an odd number of
derivatives of even functions produce odd functions, and since (4)
the value of any odd function of zero argument is zero, we may con-
veniently treat the odd and even functions separately as follows.
The sixteen conditions the even functions must satisfy in order to
fulfill Eqs. (55) are concisely stated in the matrix form

f0(°) fo '(o) fo(4)(0) g10 (o)

f 2 (0) f 2 "(O) f2( ( 0 ) g' 2 (0) (63a)

f 4 (0) f4"(0) f 4 (4)(0) g' 4 (0)

f6(0) f 6"(0) f6 (4)(o) g'6(0)_

The sixteen conditions for the odd functions are
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- 1 l(O) f.,11(o) gl(o) g 11l(O

f33(0) f'" 3(0) g33(0) = [I] (63b)

f,5(0) ff' 5(0) g5 (O) g"5 (0)

_fl7(0) fi '7(0) g7 (0) g" 7 (0)

One advantage of treating the even and odd functions separately is that

it reduces the size of the above matrix statements. This is a total of

thirty-two conditions for the thirty-two a coefficients. Let us look at

how these statements in terms of the f 1 (4) and g1 (4) functions may be

conveniently rephrased in terms of the a coefficients. Again considering

the even functions as examples, fo0 (0) = 1 means

Ol 02 03 {o} 1

fo"(O)= 0 means

Lao] [J2 = 0

f0(4)(O) = 0 means

L ot j 1

g'0 (0) = 0 means

LaoJ [j)][LJ(K]_ 0

If we repeat this analysis for the remaining twelve expressions, and

combine our results, they are

a01 a 0 2  aO0 3  a0h1

a2 1  a2 2  a 2 3  a24
[IQ] : [II] (64)

a41 a 4 2  
a 4 3  

a4 4

a 6 1  a6 2  a 6 3  a 6 4
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where [Q] has as its columns

[)] 2 , [Z]4f and [3)] [L] [KK-1
11 111

O o 0 0

Hence, for the even functions

[A] = [Q]-' (64a)

and for the odd functions

[A] = [U]-l (64b)

where [U] has as its columns

11 1 1 1

0 0 0 0
1] , [D]3 [L][K]I , and [0] 2 [L][K]-l

o 0 0 0

At this point we have determined all the functions f.(p) and gi(4) in

7
Pn = y Ai f (4 ) (51)

i=0

7
Tn(ý) y Ai gi (M) (57)

i=0

and we did this so that Eqs. (55) are satisfied. Hence the state vector

5n n n 2n
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can be determined at any value of the argument 4 from its value at

€ = 0. That is, in particular we now have the transfer matrix by

which to obtain {E} at 6 = 0..J

[= R] {,}r
j j-1

where the elements of [R]j are given by

rkZ = L °i 1 i2 ci 3 3i4j [D] k-l{(j)}

for Z = i+1, k = 1, 2, 3, 4, and 5

and

rk = Lail ai 2  1i3  ei4J [Dl k-6 [L] [K]-1 {(ej)}

for £ = i+1, k = 6, 7, and 8

and where

{Me(e)} = {(e()} for £+k = even

{M(oj)} = {o (0 )} for £+k = odd

The {E} vector is not suitable for the incorporation of boundry con-

ditions, nor does it conveniently mesh with our analysis of stringers.
Therefore we will now convert LEJto LZ - n n nl' (M)n(V )n(N~x)

t.~ a n 4 (MW ON4,In\4,
The first component of our mixed displacement and force type

state vector can be expressed in terms of the components of V J by

referring to the thkrd of Eqs. (46). From this we find that

Tn(4,) = [1 ' - (1+kq4) (p + 2kq 2 v"n - k(n()]vq n nn n nn

The second, third, and fourth elements of LZJ present no difficulty.

Referring to Eqs. (54), we have

Me = D ( 1 32w + 'V 32w
a2 D--2 -X5
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So,

a 2

Similarly

VO = a 2W [a -- + (2-v)- 32
~ ~* cf~ 2 ~ax 2

and

(vC)n=D [¢,,, _ (2-v)q ,n 2 4]
a3

Similarly

No Eh 3v - w+ vau

1Nv•2 a 3ý a 3x

so

(N¢) = E (TI -( - vqh T)n a(l_•2) n n nn

- D (q4,D 2- ¢,,n + P(4))

Similarly 
a 3

= Eh 1 au + av
2(---l+9 a - x

so

(N~x) Eh (Tv +q T
n 2a(l+v) n n n

It follows from the second of Donnell's equations, Eqs. (46) that

Tv' = 2 l T-v 2
n (14v)q n n l+v n (1+v)q

Therefore

(Ncx) a Eh (q T-n +vqn n q
a(1+V) q q

n n
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Now we can set up our conversion matrix so that

{Z} = [B]j {I} (66)

where the subscript j is associated with [B] indicates that this matrix

is to be computed from the physical constants of the jth shell segment.

The details of the matrix [ BI j can be found on the following two pages.

The {Z} vectors at the two opposite edges of the jth shell segment can

now be related by writing

[B R [B];1 jZ}j_
£ -1i J-{Zlj = [h1j [R]j 1 {~r

S[F] {z}r (67)

This completes our development of the necessary field transfer

matrix, and we now turn our attention to the point transfer matrix

mecessary to account for the effects produced by a stringer and a

mass line. Eqs. (37) are our starting point for the case of a stringer.

If we insert the series expansions for the deflections, monent, shear,

and tensile force into these equations, we can write the result for a

stringer as

(M)r(Me)£'n ^ -- dn~~f

r £-

(M _( = c 1V€ + d 4) + f Yn

nfn a n n n

(Vý)rn -(V )£n = en - d al n -g T n(8

(N )r (N )' Y + 1 0' + 0
Sn v n a n n

where the quantities S , d, and e are detailed in Eqs. (39), and
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o 0 0 0 0 0 0C

0 0 0 0 0 0

S 0 0 0 0 0 0

Nr-i

I

0 0 0 0 0 -i 0 0

o ciio 0 2 0 0 0•c

H 0 CD C0 CD 0 H0

I5
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S= sz (nT)4 1 pA(cz - sz)W2

= El r(n, ) (69)

EI (--)- pAW2

The corresponding contributions of a panel skin mass line located at
the same station are-Jw2 ,+pw 2 , and _-w 2 respectively. Thus we may
compose a general point transfer matrix as

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

[G] J= 0 f a e-JW2 1 0 0 0

o _-+pW2 - 0 o 1 0 0

o 1_p2 g' 0 0 1 0

0 0 0 0 0 0 0 1

Of course• if no stringer exists at station J, we merely set
c= d = e = f = g = h = 0. On the other hand, if there is no panel
mass line, Pj = J= 0.

Now that we have described the basic transfer matrices [F] and [G],
we can relate the state vectors at any two locations in the panel
system. We determine the natural frequencies as before by relating
the state vectors at the two ends of the panel row. For example, if
both ends of the panel row are simply supported (i.e. T n= n = (M)
= (NO)n = 0), these two vectors and the connection between them are,
for any value of n
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T T r

0 0

0 0

'la r/a r
= [T]

o N 0 0

v V

o 0

N 0N

L r
where [T] = [FIN [G]N-1 ... [G] 1 [F] 1 .

N 0

Then proceding as before, the determinant equation for the natural fre-

quencies is, for any n,

r
t 21 t 24 t 26 t 28

t 3 1  t34 t36 t38

54= A(w) 58o (70)t 51 t 54 t 56 t 58 AM =0()

t 7 1  t74 t76 t78

N 0

The determination of the normal mode associated with a natural frequency
can in theory be approached in a manner analogous to the case of flat
panels. However, in both the flat and curved panel cases, difficulties
may arise when actually carrying out these frequency and mode shape
computations.
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VII. NUMERICAL COMPUTATIONS

Two types of difficulties can arise when carrying out the numerical
solution of any of the frequency determinant equations. Reference [2],
section 7.1 is a good and sufficient explanation of these difficulties.
The first of these difficulties is the loss of significant figures when the
frequency determinant is reduced in an ordinary manner. This case is
exemplified by Eq. 7-3 of Reference [2]. The second difficulty arises
when the elastic supports are very stiff in comparison with the remainder
of the structure. The error introduced is explained by Eq. 7-h. In sec-
tions 7-2 and 7-3 there are presented two methods of avoiding these
obstacles. The first method, the Delta Matrix method, is limited in the
size of the frequency determinant to which it can be applied. It is not
difficult to apply successfully to a four by four frequency determinant,
such as that of a flat panel system, and by dint of much programming,
it can also be applied to an eight by eight frequency determinant. A
larger determinant would probably be beyond the capabilities of most
present day digital computors. In section 7-h a trial and error
scheme is explained. A short summary of this method is available in
Reference [1], section IV.

Even when a direct graphical solution of the frequency determi-
nant equation is no problem, there is a possibility that the values of
A(w) may pass through zero very abruptlyf9J. Thus, while it is easy to
make a very good estimate of w per se, it is very difficult to obtain
near zero values of A(w) for tRe purpose of computing the mode shapes.
As a result, if many transfer matrices are necessary to describe the
structure, the error in the initial state vector will grow to the point
where the final state vector is not even approximately representative of
the given boundry condition at that end. A means of circumventing this
error accumulation is that of adopting a forced vibration point of view.
To begin, sinusoidal shear forces (or moments) of frequencies just on
either side of the natural frequency of interest are applied in turn
to the structure, and the respective states of the structure are calcu-
lated. If it is found, as would be expected, that the computed states
corresponding to the two such frequencies are very nearly the same, then it
may be concluded that both states are dominated by the same mode--the mode
corresponding to the bracketed natural frequency. Therefore it is reason-
able to call the averages of the deflection components of these states the
mode shapes of that nearby natural frequency.

The following example will illustrate the features of the forced
vibration procedure of calculating modal states. Let us apply a sinusoidal
shear loading of a unit amplitude at station s of a curved panel with
simple support end conditions. By combining our successive transfer
matrix equations we arrive at
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0

0

0

IZ}k = k[T ]r Z}r + '[T ]r 0
N N 0 0 N s 4 0

1
0

0 .0

where the transfer matrices are evaluated at one of the two selected
frequencies. Again we make use of the boundry conditions and reduce
the above eight by one matrix equation to the following four by one
equation

0 t2l t24 t26 t28 T t 26

I Z k -
- k I I Z - r

0 t 31 t 34 t36 t38 ipta + t 36

0 t 51 t54 t 56 t 58 V t 56

0 JIN Ntt7ý t74 t76 t7UO N N. t 76, s

This matrix equation can be solved for LT 4ý Va V Ný 0

by inverting the four by four reduced transfer matrix. This inversion

is always possible even in the case of an undamped model analysis be-
cause the determinant of this matrix is identical to AM which, of

course, is non-zero by our choice of a frequency other than a natural

frequency. Furthermore, the more abrupt the change in the value of

A(w), te. the more acute the difficulty, the closer the values of the selected

frequencies can be to the natural frequency. (Differences of 0. 1 radians

have been satisfactory in all respects in the cases known to the author.)

It is of course necessary to avoid nodal points when applying the driving

force or moment. This can be assured by altering the point of application

of the driving-load and then comparing the results.
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